Type: \(\displaystyle 0\) (Dynkin type computed to be: \(\displaystyle 0\))
Simple basis: 0 vectors:
Simple basis epsilon form:
Simple basis epsilon form with respect to k:
Number of outer autos with trivial action on orthogonal complement and extending to autos of ambient algebra: 0
Number of outer autos with trivial action on orthogonal complement: 0.
C(k_{ss})_{ss}: G^{1}_2
simple basis centralizer: 2 vectors: (0, 1), (1, 0)
Number of k-submodules of g: 14
Module decomposition, fundamental coords over k: \(\displaystyle 14V_{0}\)
g/k k-submodules
idsizeb\cap k-lowest weightb\cap k-highest weightModule basisWeights epsilon coords
Module 11(-3, -2)(-3, -2)g_{-6}\varepsilon_{1}+\varepsilon_{2}-2\varepsilon_{3}
Module 21(-3, -1)(-3, -1)g_{-5}-\varepsilon_{1}+2\varepsilon_{2}-\varepsilon_{3}
Module 31(-2, -1)(-2, -1)g_{-4}\varepsilon_{2}-\varepsilon_{3}
Module 41(-1, -1)(-1, -1)g_{-3}\varepsilon_{1}-\varepsilon_{3}
Module 51(0, -1)(0, -1)g_{-2}2\varepsilon_{1}-\varepsilon_{2}-\varepsilon_{3}
Module 61(-1, 0)(-1, 0)g_{-1}-\varepsilon_{1}+\varepsilon_{2}
Module 71(1, 0)(1, 0)g_{1}\varepsilon_{1}-\varepsilon_{2}
Module 81(0, 1)(0, 1)g_{2}-2\varepsilon_{1}+\varepsilon_{2}+\varepsilon_{3}
Module 91(1, 1)(1, 1)g_{3}-\varepsilon_{1}+\varepsilon_{3}
Module 101(2, 1)(2, 1)g_{4}-\varepsilon_{2}+\varepsilon_{3}
Module 111(3, 1)(3, 1)g_{5}\varepsilon_{1}-2\varepsilon_{2}+\varepsilon_{3}
Module 121(3, 2)(3, 2)g_{6}-\varepsilon_{1}-\varepsilon_{2}+2\varepsilon_{3}
Module 131(0, 0)(0, 0)h_{1}0
Module 141(0, 0)(0, 0)h_{2}0

Information about the subalgebra generation algorithm.
Heirs rejected due to having symmetric Cartan type outside of list dictated by parabolic heirs: 0
Heirs rejected due to not being maximally dominant: 10
Heirs rejected due to not being maximal with respect to small Dynkin diagram automorphism that extends to ambient automorphism: 10
Heirs rejected due to having ambient Lie algebra decomposition iso to an already found subalgebra: 0
This subalgebra is not parabolically induced by anyone
Potential Dynkin type extensions: A^{3}_1, A^{1}_1,